Neuro diffusion

Fostering meaningful learning through generative artificial intelligence

Authors

  • Jaime Alberto Parra Plaza Universidad del Valle; Colombia.

DOI:

https://doi.org/10.64876/radi.v26.4

Keywords:

Image generation, neurogenetics, stable diffusion, teaching strategy

Abstract

Artificial intelligence offers enormous potential for innovation in the educational field, particularly in the detection of potential difficulties in the learning process for students. This paper describes a teaching strategy based on image generation using the Stable Diffusion model to promote meaningful learning in electronic engineering students. The strategy is designed based on the neurogenetic characteristics that underlie the learning process itself, allowing for individual interventions considering the specific aspects of each student. Partial results obtained in pilot tests suggest that the intervention promo tes more meaningful and lasting learning, as measured in terms of interest, motivation, and assimilation, with improvements exceeding 60% relative, normalized gains be tween 0.5 and 0.82.

Downloads

Download data is not yet available.

References

Amin, T. & Levrini, O. (2017). Converging Perspectives on Conceptual Change: Mapping an Emerging Paradigm in the Learning Sciences. Routledge.

Ausubel, D. (2000). The Acquisition and Retention of Knowledge: A Cognitive View. Springer.

Dehouche, N., & Dehouche, K. (2023). What’s in a text to image prompt? The potential of stable diffusion in visual arts education. Heliyon. (https://www.sciencedirect.com/science/article/pii/S2405844023039646)

Doyle, T., & Zakrajsek, T. (2013). The New Science of Learning: How to Learn in Harmony With Your Brain. Stylus Publishing.

Gruber, M. (2014). States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit. Neuron, 84 (2), 486 – 496. (https://www.sciencedirect.com/science/article/pii/S0896627314008046 )

Nusbaum, H.C., Uddin, S., Van Hedger, S.C. & Heald, S. (2018) Consolidating skill learning through sleep. Current Opinion in Behavioral Sciences, 20, 174–182. (https://doi.org/10.1016/j.cobeha.2018.01.013 )

Parra-Plaza, J.A. (2017). Propiciando el aprendizaje significativo en entornos interactivos mediante la inserción de moduladores neurogenéticos. COMPDES.

Parra-Plaza, J.A. (2018). Computación adaptativa para mediar tecnológicamente en la enseñanza para el aprendizaje. Ed. Inst. Antioqueño de Investigación.

Parra-Plaza, J.A. (2019). Citoaprendizagem: Computação bioinspirada adaptativa focada na aprendizagem significativa. CISCI

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-Resolution Image Synthesis With Latent Diffusion Models. CVPR. (https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html)

Roychoudhury, A., Gabel, D. & Hake, R. (1989). Inducing and Measuring Conceptual Change in Introductory-Course Physics Students. AAPT Announcer, 19, 4 – 64. (http://dx.doi.org/10.1119/1.18809)

Sordo, Z., Chagnon, E., & Ushizima, D. (2025). A Review on Generative AI for Text-to-Image and Image-to-Image Generation and Implications to Scientific Images. Applied Math and Computational Research Lawrence Berkeley National Laboratory Berkeley. (https://arxiv.org/html/2502.21151v2)

Published

2025-12-27

How to Cite

Parra Plaza, J. A. (2025). Neuro diffusion: Fostering meaningful learning through generative artificial intelligence. Revista Argentina De Ingeniería, 26, 4. https://doi.org/10.64876/radi.v26.4

Issue

Section

ARTÍCULOS